
Solutions to the Problems
from 08/14/2025

Problem 1. In any triangle ABC, let M and N be the midpoints of the sides
AB and AC, respectively. Let P be the midpoint of the segment MN . Denote
by G the centroid of △ABC. Prove that the points A, P , and G are collinear.
Note: The centroid of a triangle is defined as the intersection point of its me-
dians.

Author: Michał Fronczek
Solution: Let S be the midpoint of segment BC. We then know that AS is a
median in △ABC, and by definition, point G lies on it. Therefore, A, G, and S
are collinear. Hence, we can remove G from our thesis and instead prove that P
also lies on the median AS.
Note that AM
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2, and moreover the rays AB and AC share the
common point A. Therefore, by the converse of Thales’ theorem we obtain that
segments MN and BC are parallel. Furthermore, MN
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Moreover, MP and BS are parallel, since they are segments lying on the parallel
lines MN and BC. Therefore, again by the converse of Thales’ theorem, we
obtain that the points A, P , and S are indeed collinear. As we already know,
this completes the proof.
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Zadanie 2. Find all prime numbers p such that the number p4 +4p is also prime.

Author: Michał Fronczek
Solution: We will consider our number from the point of view of remainders
modulo 5.
First, let us check what happens when p is even. The only even prime number
is 2, hence p = 2. However, in this case the number from the thesis equals 32,
which is obviously not prime. Therefore, p must be odd.
Now consider the case when 5 divides p. Since p is prime, this means p = 5.
Substituting this into the expression from the thesis, we obtain the value 1649.
But 1649 = 17 · 97, so it is not prime. Hence 5 does not divide p.
If p leaves remainder 1 upon division by 5, then p = 5k + 1 and

p4 = 625k4 + 500k3 + 150k2 + 20k + 1,

so p4 leaves remainder 1 modulo 5. Similarly, expanding for p that leaves rema-
inders 2, 3, 4 modulo 5, in every case we find that p4 always leaves remainder 1.
Now consider powers of 4. They alternate between remainders 4 and 1. Indeed,
4 leaves remainder 4, 42 = 16 leaves remainder 1, 43 = 64 again leaves remain-
der 4, and so on. In particular, remainder 4 occurs for odd exponents. Since we
already know that p is odd, it follows that 4p leaves remainder 4 modulo 5.
Combining these results, we conclude that the number p4 + 4p leaves remainder
1 + 4 = 5, i.e. 0 modulo 5, so it is divisible by 5. On the other hand, we know
that

p4 + 4p ⩾ 34 + 43 = 145 > 5,

so it cannot be prime, because it has a prime divisor smaller than itself.
Thus we have considered all possible cases, and in none of them did we find a
suitable number p. Therefore, such a number cannot exist.
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