

Solutions to the Problems from 09/08/2025

Problem 1. Determine all positive integers n such that the number

$$\frac{2^n}{n+1}$$

is a square of an integer.

Bonus: Let A be the set of all positive integers n > 2025 such that the number

$$\frac{2^n}{n+1}$$

is a square of an integer, and let B be the set of all positive integers n > 2025 such that the number

 $\frac{2^{2^n}}{n+1}$

is a square of an integer. Prove that the sets A and B are disjoint.

Author: Bartosz Trojanowski

Solution: Since the number $\frac{2^n}{n+1}$ is an integer, we have $n+1 \mid 2^n$. Hence, n+1 must be a power of two. Let $n+1=2^x$. Then

$$\frac{2^n}{n+1} = \frac{2^{2^x-1}}{2^x} = 2^{2^x-x-1}.$$

This number is a perfect square only if $2^x - x - 1$ is even and nonnegative. It follows that x must be odd. Moreover, $2^x \ge x + 1$ for x > 0, so the numbers in question are of the form $n = 2^{2k+1} - 1$, where $k \ge 0$ is any integer.

Bonus solution: If there exists an n such that both $\frac{2^n}{n+1}$ and $\frac{2^{2^n}}{n+1}$ are perfect squares, then their product is also a perfect square. It is equal to

$$\frac{2^n \cdot 2^{2^n}}{(n+1)^2} = \frac{2^{2^n+n}}{(n+1)^2}.$$

Hence, 2^{2^n+n} must be a perfect square, which implies that 2^n+n is even, i.e., n is even. However, as we proved earlier, $\frac{2^n}{n+1}$ is a perfect square only for odd n, which completes the proof.

Solutions to the Problems from 09/08/2025

Problem 2. Given an acute triangle ABC. Let D, E, F be the feet of the altitudes from vertices A, B, C respectively. On side BC lies a point K. Let L be the intersection of EF and AK. Prove that the circumcenter of triangle ABC lies on segment AK if and only if $\not \subset ELA$ is a right angle.

Author: Tomasz Kossakowski

Solution: Let the intersection of the altitudes be H. Denote $\not ABAD = \alpha$. The quadrilateral AFHE is cyclic, since

$$AFH + AEH = 90^{\circ} + 90^{\circ} = 180^{\circ}.$$

Then

The points O and H are isogonal conjugates, so O lies on AK if and only if

$$AH = OAC =$$

In this case,

$$\not \exists LEH = 90^{\circ} - \alpha,$$

SO

$$ELA = 180^{\circ} - (90^{\circ} - \alpha) - \alpha = 90^{\circ}.$$

