

Problem Solutions from 09.10.2025

Problem 1. Prove that

$$\frac{1}{\sqrt[3]{1}} + \frac{1}{\sqrt[3]{2}} + \ldots + \frac{1}{\sqrt[3]{2025}} > 200.$$

Problem author: Tomasz Kossakowski

Solution:

Method 1:

Let $x_k = \sqrt[3]{k}$ for $k = 1, 2, \dots, 2025$. First, we apply the Cauchy inequality in Engel's form:

$$\sum_{k=1}^{2025} \frac{1}{x_k} = \sum_{k=1}^{2025} \frac{1^2}{x_k} \geqslant \frac{\left(\sum_{k=1}^{2025} 1\right)^2}{\sum_{k=1}^{2025} x_k} = \frac{2025^2}{\sum_{k=1}^{2025} x_k}.$$

Next, we use the power mean inequality for powers p = 1 and q = 3 (for positive numbers and p < q we have $M_p \leq M_q$), in the form

$$\left(\frac{1}{n}\sum_{k=1}^n x_k\right)^3 \leqslant \frac{1}{n}\sum_{k=1}^n x_k^3.$$

For $x_k = \sqrt[3]{k}$ and n = 2025, this gives

$$\left(\frac{1}{2025} \sum_{k=1}^{2025} \sqrt[3]{k}\right)^3 \leqslant \frac{1}{2025} \sum_{k=1}^{2025} (\sqrt[3]{k})^3 = \frac{1}{2025} \sum_{k=1}^{2025} k.$$

Hence

$$\sum_{k=1}^{2025} \sqrt[3]{k} \leqslant 2025 \left(\frac{1}{2025} \sum_{k=1}^{2025} k \right)^{1/3}.$$

Compute the arithmetic sum:

$$\sum_{k=1}^{2025} k = \frac{2025 \cdot (2025+1)}{2} = \frac{2025 \cdot 2026}{2} = 2025 \cdot 1013.$$

Thus,

$$\sum_{k=1}^{2025} \sqrt[3]{k} \leqslant 2025 \cdot 1013^{1/3}.$$

Returning to Engel's inequality:

$$\sum_{k=1}^{2025} \frac{1}{\sqrt[3]{k}} \geqslant \frac{2025^2}{\sum_{k=1}^{2025} \sqrt[3]{k}} \geqslant \frac{2025^2}{2025 \cdot 1013^{1/3}} = \frac{2025}{1013^{1/3}} > 200.$$

Problem Solutions from 09.10.2025

Therefore,

$$\sum_{k=1}^{2025} \frac{1}{\sqrt[3]{k}} > 200.$$

Method 2:

The function $f(x) = x^{-1/3}$ is decreasing, so

$$\sum_{n=1}^{2025} \frac{1}{\sqrt[3]{n}} > \int_{1}^{2026} \frac{1}{\sqrt[3]{x}} \, dx = \left. \frac{3}{2} x^{2/3} \right|_{1}^{2026} = \frac{3}{2} \cdot 2026^{2/3} - \frac{3}{2} > 238.$$

Problem Solutions from 09.10.2025

Problem 2. Let σ be a composite number. Suppose the equation

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{\sigma}$$

is satisfied by some positive integers a, b. Show that there exist three pairs $(a_1, b_1), (a_2, b_2), (a_3, b_4), (a_4, b_4), (a_5, b$

Problem author: Bartosz Trojanowski

Solution: We prove that all triples (a, b, σ) satisfying the equation are of the form $a = kx(x+y), b = ky(x+y), \sigma = kxy$. Multiplying both sides by $ab\sigma$ gives

$$\sigma(a+b) = ab \iff (a-\sigma)(b-\sigma) = \sigma^2.$$

If $gcd(a, b, \sigma) > 1$, we can divide the equation by it since both sides are of the same degree. Therefore, without loss of generality, assume $gcd(a, b, \sigma) = 1$. Clearly, $\sigma > 1$, so it has a prime divisor p. Then

$$2v_p(\sigma) = v_p((a-\sigma)(b-\sigma)) = v_p(a-\sigma) + v_p(b-\sigma).$$

If both numbers are divisible by p, then $p \mid a, b, \sigma$, which contradicts the coprimality assumption. Hence the p-adic exponent of one of $a - \sigma$ or $b - \sigma$ equals $2v_p(\sigma)$. Repeating for each prime divisor, we obtain that $a - \sigma$ and $b - \sigma$ are perfect squares. So $a - \sigma = x^2, b - \sigma = y^2$ for some x, y. Then

$$\sigma^2 = x^2 y^2 \implies \sigma = xy.$$

Hence

$$a = x(x+y), \quad b = y(x+y).$$

We can also multiply a, b, σ by some k, which was previously excluded by the gcd.

It remains to show that any composite σ can be represented as kxy in at least 4 ways. Since σ is composite, it has two distinct divisors p, q > 1. Let $\sigma = pqA$ (where A may be 1). Then we can take the triples:

$$(k, x, y) = (pq, A, 1), (p, A, q), (q, A, p), (1, Ap, q).$$