

Solutions to the problems from 14.11.2025 (Senior Day)

Problem 1. Grandma bakes spherical doughnuts of radius R. Inside each doughnut, there is an empty spherical cavity of radius r. The doughnut content in a doughnut (the ratio of the volume occupied by dough to the total volume of the doughnut) is $\frac{1}{2}$. Find r as a function of R.

Author: Grzegorz Rudnicki

Solution: The volume of the empty cavity is $\frac{4}{3}\pi r^3$, and the total volume is $\frac{4}{3}\pi R^3$. Thus, the volume of the outer doughnut part is $\frac{4}{3}\pi (R^3 - r^3)$. Since from the problem statement

$$\frac{\frac{4}{3}\pi r^3}{\frac{4}{3}\pi (R^3 - r^3)} = 1,$$

we know that

$$r^3 = R^3 - r^3.$$

This equation has one real solution; it is

$$r = \frac{\sqrt[3]{2}}{2}R.$$

Solutions to the problems from 14.11.2025 (Senior Day)

Problem 2. Grandma plans to serve coffee with milk. In the cupboard there are cups shaped like cones of height H. To what height h should the coffee be poured so that the coffee content in coffee (defined analogously to the doughnut content) equals $\frac{1}{2}$?

Author: Grzegorz Rudnicki

Solution: The coffee must fill half of the cup. Let S be the similarity scale factor between the cone filled with coffee and the whole cone. The ratio of their volumes is S^3 . Since the volume of a cone is directly proportional to its height, we have Sh = H, which yields

$$h = \frac{1}{\sqrt[3]{2}}H.$$